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Abstract

In this paper we develop a theory of second order connections with a view towards the associated stochastic
calculus. Connections in principal fiber bundles are defined as sections of the tangent space of second order
differential operators. We prove existence and uniqueness of stochastic horizontal lifts for semimartingales
with respect to these connections. Finally, the parallel transport along semimartingales on the base space is
studied.
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1. Introduction

The purpose of this paper is to develop an absolute differential calculus of second order. We
focus our attention on a special type of connections for Schwartz geometry, the 2-connections.
They are objects analogous to the classical connections on fiber bundles, but specially adapted
to the second order geometry. Naturally, each 2-connection has associated a stochastic horizontal
lifting. We study the properties of 2-connections and their relationships with other type of second
order connections in the context of the general theory. We remark that the 2-connections are
implicit in the works of Meyer [27,28] and Schwartz [32].
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Our main motivation to study a second order geometry is its relevance in the stochastic calculus.
In fact, let X be a continuous semimartingale in a manifold M, the Itô formula shows that Itô’s
differentials dXi and d[Xi,Xj] (where (xi) is a local chart and Xi the ith coordinate of X in this
chart) behave under a change of coordinates as the coefficients of a second order tangent vector.
The (purely formal) stochastic differential

d2Xt = dXit
∂

∂xi
+ 1

2
d[Xi,Xj]t

∂2

∂xi∂xj

is a linear differential operator on M, atXt , of order at most two, with no constant term. Therefore,
the tangent object to Xt is formally one of second order.

Let x be a point in a manifold M, the second order tangent space to M at x, denoted τxM, is the
vector space of all linear differential operators on M, at x, of order at most two, with no constant
term. Formally, we have that d2Xt ∈ τXtM. We develop a theory of connections adapted to this
second order geometry and based on semimartingales instead of smooth curves.

Letπ : P → M be a fiber bundle and H = {Hp : p ∈ P} a connection, whereHp is the horizon-
tal lifting of TπpM to TpP . The fundamental geometric construction associated with a connection
is the horizontal lifting of smooth curves. Let γ be a smooth curve in M and define γ̃ to be a
horizontal lifting of γ if it satisfies the differential equation dγ̃t = Hγ̃tdγt .

A family H = {Hp : p ∈ P} is said to be a 2-connection, if Hp : τπpM → τpP are Schwartz
morphism (a special type of linear mapping, see below) such that π∗ ◦Hp = IdτπpM . Analogously
to the case of smooth curves, we have an associated horizontal lifting of semimartingales. In fact,
let X be a continuous M-valued semimartingale, we have that the P-valued semimartingale X̃ is
a horizontal lifting of X if it satisfies the following stochastic differential equation:

d2X̃t = HX̃t d2Xt.

The horizontal lifting of semimartingales with respect to a connection H were studied by Bismut
[3], Shigekawa [33] and others (see Meyer [27], Ikeda and Watanabe [18], Schwartz [32] and
Emery [11]), the first studies of Itô [19] and Dinkyn [10] are about horizontal lifting of Brownian
motion. The present work is a formalization and extension of the articles mentioned.

In Section 3 we describe a formula which links the covariant derivative operator ∇, associated
to a 2-connection, with the induced parallel transport over an L-diffusion (detailed definitions are
presented in Section 3). This formula is similar to the usual one and reads

(//∇Xt )
−1ϕ ◦Xt = (local martingale)t + ϕ(π(p)) +

∫ t

0
//−1
Xs

(∇Lϕ ◦Xs) ds, (1)

where //∇Xt is the parallel transport associated to ∇ of a section ϕ of the vector bundle over the
L-diffusion X while the right hand side denotes covariant derivative of the section in the direction
of the second order differential operator L.

The paper is organized as follows. In Section 2, we review some of the standard facts on
Schwartz geometry (see for instance [11,13,27,28,32]) and introduce the fundamental notions
of 2-connection and stochastic horizontal lifting. We prove that these connections are equivalent
to the Ehresmann’s holonomic connection of order two [14] and, by means of a construction of
Meyer [27], we describe the Stratonovich prolongation of connections (in the usual sense) to
2-connections, in terms of jet theory. This prolongation is the basis of the Stratonovich transfer
principle in stochastic calculus (see for instance Emery [12]). Finally, it is shown that the 2-
connections of π : P → M are in bijection with pairs (Γ,Φ) where Γ is a connection in the usual
sense and Φ is a section of Ker(π∗) ⊗⊙2

T ∗M → P . In Section 3, we study 2-connections in
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vector bundles and discuss different formulations of this notion. The L-connections of Liebermann
[23,24], are a particular type of connection of order 2, we prove that every L-connection for a
vector bundle E is induced by a 2-connection for the principal fiber bundle of the basis BE. We also
show that the L-connections can be defined by operators of covariant derivatives encompassing
the covariant derivatives of the classical connections in vector bundles. Finally, we obtain the
formula (1) that links the operator of covariant derivative associated to a 2-connection, with the
induced parallel transport.

2. Schwartz geometry and 2-connections

Throughout this paper all the geometrical objects like, manifolds, maps and functions will
always be assumed to be smooth. As to manifolds, jet theory and stochastic differential geometry,
we shall use freely concepts and notations of Emery [11], Kobayashi and Nomizu [20] and Kolar
et al. [21].

Let x be a point in a manifold M. The second order tangent space to M at x, τxM is the vector
space of all differential operators on M at x of order at most two without a constant term. Let
(U, xi) be a local coordinate system around x. Every L ∈ τxM can be write in a unique way as

L = aiDi + aijDij,

where aij = aji,Di = ∂
∂xi

and Dij = ∂
∂xi∂xj

are differential operators at x (we shall use the con-
vention of summing over repeated indices). The elements of τxM are called second order tangent
vectors at x, the elements of the dual vector space τ∗xM are called second order forms at x.

The disjoint union τM = ⋃x∈M τxM (respectively, τ∗M = ⋃x∈M τ∗xM) is canonically en-
dowed with a vector bundle structure over M, it is called the second order tangent fiber bundle
(respectively, second order cotangent fiber bundle) of M.

Letφ : M → N be a smooth map, andL ∈ τxM. We have thatφ∗(x)L ∈ τφ(x)N, the differential
of φ is given by

φ∗(x)L(f ) = L(f ◦ φ),

where f ∈ C∞(N). A covector θ ∈ τ∗φ(x)N is pulled back into φ∗(x)θ ∈ τ∗xM by

〈φ∗(x)θ, L〉 = 〈θ, φ∗(x)L〉,
where L ∈ τxM.

Let L be a smooth section of τM. The square field operator associated to L, denoted by QL, is
the symmetric tensor given by

QL(f, g) = 1
2 (L(fg) − fL(g) − gL(f )),

where f, g ∈ C∞(M). We can consider Qx : τxM → TxM 
 TxM as the linear map defined by

Qx(L = aiDi + aijDij) = aijDi 
Dj.

Push forward of second order vectors by smooth maps is related to the so called Schwartz mor-
phisms between second order tangent vector bundles.

Definition 1. Let M and N be manifolds and take x ∈ M and y ∈ N. A linear map f : τxM → τyN

is called a Schwartz morphism if

(i) f (TxM) ⊂ TyN and
(ii) for every L ∈ τxM we have that Q(fL) = (f ⊗ f )(QL).
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For the convenience of the reader we prove a known result of Emery [11] which will be
mentioned later.

Lemma 1. A map f : τxM → τyN is a Schwartz morphism if and only if there exists a smooth
map φ : M → N with φ(x) = y such that f = φ∗(x).

Proof. Let φ : M → N be a smooth map with φ(x) = y. Obviously, we have that φ∗(x)TxM ⊆
TyN. Let L ∈ τxM, we have that

Q(φ∗(x)L)(g, h) = QL(g ◦ φ, h ◦ φ) = φ∗(x) ⊗ φ∗(x)(QL)(g, h)

for all g, h ∈ C∞(N). We conclude thatφ∗(x) is a Schwartz morphism. Conversely, let f : τxM →
τyN be a Schwartz morphism and (U, xi) and (V, yλ) be local coordinate system around of x and
y, respectively. Then f verifies

f (Di) = fαi Dα and f (Dij) = fαijDα + 1
2 (fαi f

β
j + fαj f

β
i )Dαβ.

Since there exists a smooth map φ : M → N such that

Diy
α ◦ φ(x) = fαi , Dijy

α ◦ φ(x) = fαij

we have that the proposition holds. �

Definition 2. Let π : P → M be a fiber bundle. A family of Schwartz morphisms H = {Hp :
p ∈ P} is called a 2-connection if

(1) Hp : τπ(p)M → τpP ,
(2) π∗ ◦Hp = Idτπ(p)M , and
(3) the map p → HpL is a smooth section of τP , where L is an arbitrary smooth section of τM.

Whenever P = P(M,G) is a principal fiber bundle, we say that H is a principal 2-
connection if it also verifies the invariance under G, namely:

(4) Hpg = Rg∗Hp for all p ∈ P and g ∈ G where Rg stands for the right action of G in P.

Next, we describe these connections in local coordinates. Let (xλ, yi) and (xλ) be local charts
for P and M, respectively, then a 2-connection H for π : P → M can be written in a unique way
as

Hp(Dλ) = Dλ + aiλDi, Hp(Dλµ) = Dλµ + aiλµDi + a
ij
λµDij + 2aiνλµDiν,

where

a
ij
λµ = 1

2 (aiλa
j
µ + aiµa

j
λ), aiνλµ = 1

2 (aiλδ
ν
µ + aiµδ

ν
λ).

These equalities guarantee that Hp is a Schwartz morphism.
We consider also a filtered probability space (Ω,F,P, (Ft)t≥0) satisfying the usual conditions

(see for example [11,13,30]). We always assume that the semimartingales have continuous paths
and are adapted to the same filtered probability space. Let π : P → M be a fiber bundle and
H = {Hp : p ∈ P} be a 2-connection.

Definition 3. Let X be a continuous M-valued semimartingale and ρ a stopping time. A stochastic
horizontal lifting up to ρ of X with respect to the 2-connection H, starting at p ∈ P , is a P-valued
semimartingale X̃t with lifetime ρ satisfying:
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(i) X̃0 = p,
(ii) πX̃t(ω) = Xt(ω) a.s. and

(iii)
∫ t

0 〈θ, d2X̃〉 = 0 for all t such that 0 ≤ t ≤ ρ a.s. Here θ is an arbitrary section of τ∗P such
that θ ◦ H = 0.

We say that X̃ is a stochastic horizontal lift (SHL, for short) of X to P up to ρ.

The existence of SHL is established by our next theorem.

Theorem 1. Let π : P → M be a fiber bundle, H a 2-connection and p ∈ P . Then for any M-
valued semimartingale X = (Xt) such that X0 = π(p), there exists a predictable stopping time
ρ > 0 and a stochastic horizontal lifting X̃ up to ρ of X starting at p. Moreover, ρ and X̃ satisfy
the following property of uniqueness: if ρ′ is a predictable stooping time and X′ is another SHL
of X starting at p up to ρ′ then ρ′ ≤ ρ and X′ = X̃ in [0, ρ′).

Proof. Let X̃t be the maximal solution of the following stochastic differential equation:

d2X̃t = H(X̃t) d2Xt, X̃0 = p.

Existence of this solution is guaranteed because the equation has locally Lipschitz coefficients
(see [30]). Obviously πX̃t = Xt and if θ is a 2-form on P such that θ ◦ H = 0, it follows that∫ t

0
〈θ, d2X̃〉 =

∫ t

0
〈H∗(X̃)θ, d2X〉 =

∫ t

0
〈θ ◦ H(X̃), d2X〉 = 0.

Then X̃ is a stochastic horizontal lift of X. The uniqueness of the horizontal lifting, follows from
the uniqueness of solution of stochastic differential equations with locally Lipschitz coefficients,
up to a certain stopping time. �

Naturally, every principal 2-connection H for a principal fiber bundleP(M,G) induces a unique
connection in the usual sense by restriction to the tangent space HR = {(HR)p = Hp|TπpM : p ∈
P}. Conversely, every connection H for a fiber bundle π : P → M has a canonical prolongation
to a 2-connection HS that satisfies HS

p |Tπ(p) = Hp for all p ∈ P (see [27]). This prolongation is
the Stratonovich prolongation and is characterized by

HS
p {X, Y} = {HX,HY}p

for all local vector fields X, Y of M. Where {A,B} = 1
2 (AB + BA) is the skew-commutator of

the local vector fields A and B.
The next lemma shows that in the case of principal fiber bundles, the Stratonovich prolongation

of a connection (in the usual sense) is a principal 2-connection.

Lemma 2. Let P(M,G) be a principal fiber bundle and H be a connection in the usual sense.
Then HS is a principal 2-connection.

Proof. We only need to prove that, Rg∗ ◦HS
p = HS

pg for all p ∈ P and g ∈ G.
Let X and Y be local vector fields in a neighborhood of π(p) ∈ M. Since

Rg∗ ◦HS
p (X) = Rg∗ ◦Hp(X) = Hpg(X) = HS

pg(X)

and

Rg∗ ◦HS
p ({X, Y}) = Rg∗({HX,HY}p) = {HX,HY}pg = HS

pg({X, Y}).
We conclude that Rg∗ ◦HS

p = HS
pg. �
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The following construction gives another prolongation of connections to principal 2-
connections (see [5] for more details). Let P(M,G) be a principal fiber bundle and ∇ be a
G-invariant operator of covariant derivative of P such that ∇AB is vertical for any vertical field
A. Let H = {Hp : p ∈ P} be a connection for P(M,G) in the usual sense. Then there exists an
unique principal 2-connection H∇ = {H∇

p : p ∈ P} such that

H∇{X, Y} = {HX,HY} − ωH (∇HXHY + ∇HYHX)∗, (2)

where X and Y are local fields of M, ωH is the connection form associated with H and ∗ is the
homomorphism defined by the right action of G on P.

The following result ensures that in the case of a principal fiber bundle the lifetime of an
M-valued semimartingale and its horizontal lifting are the same.

Theorem 2. Let P(M,G) be a principal fiber bundle and H be a principal 2-connection. Let X
be an M-valued semimartingale and X̃ a SHL of X with respect to H. Then X and X̃ have the same
lifetime.

Proof. Let HR be the connection (in the usual sense) induced by H. We can assume without
loss of generality that the lifetime of X is ∞. We recall that Shigekawa [33] proved that XS , the
stochastic horizontal lifting in (the sense of Stratonovich) of X with respect to the connection HR,
also has time life ∞ and thatXS is the SHL of X with respect to HS

R. We define b(H) the G-valued
section of τP∗, by

b(H)p = (p∗(e))−1 ◦ (Hp − (HR)Sp) ◦ π∗(p),

where we consider p ∈ P as the mapping of G into P given by p(g) = pg. Now, we consider
the G-valued semimartingale g = ε(

∫
b(H) d2X

S), where ε is the left stochastic exponential (see
[17]). We note that g is a finite variation process with time life ∞. We claim that XSg is the SHL
of X respect to H. In fact, we have that

d2(XSg) = (d2X
S)g+XS d2g = ((HS

R)XS d2X)g+XSg d2ε

(∫
b(H) d2X

S

)

= (HS
R)XSg d2X+XSgb(H) d2X

S = (HS
R)XSg d2X+XSgb(H)(Rg)∗ d2X

S

= (HS
R)XSg d2X+ (H − (HR)S)XSg ◦ π∗((Rg)∗ d2X

S)

= (HS
R)XSg d2X+ (H − (HR)S)XSg d2X = HXSg d2X. �

Example 1. Let M be a manifold equipped with an operator of covariant derivative without torsion
∇. Let BM be the principal fiber bundle of frames of M, it is known that ∇C the complete lift of ∇
is an GL(n)-invariant operator of covariant derivative on BM with projection ∇ and that ∇C

AB is
vertical for any vertical field A (see [8, pp. 66 and 95]). Let H = {Hp : p ∈ BM} be the connection
for BM associated with ∇. According to the comments after Lemma 2, we have that there exists
an unique principal 2-connection HC := {HC

p : p ∈ BM} (prolongation of H) satisfying (2). The

stochastic horizontal lift with respect to HC is the deformed (damped, geodesic, Dohrn-Guerra)
parallel transport to BM (see [2,9,26,28]). The following result has been proved in [5].

Let Xt be the solution of the Stratonovich equation on M starting at x ∈ M,

dXt = A0(Xt) dt +
n∑
i=1

Ai(Xt) ◦ dBit,
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where A0, . . . , An are vector fields on M and (B1
t , . . . , B

n
t ) a Brownian motion on Rn. Then Yt

the SHL starting at p ∈ BM (π(p) = x) with respect to HC of X is solution of the Stratonovich
equation on BM:

dYt =
(
HA0 − 1

2

n∑
i=1

R˜(−, Ai)Ai
)

(Yt) dt +
n∑
i=1

HAi(Yt) ◦ dBit,

where R is the curvature tensor, R(−, X)Y (Z) := R(Z,X)Y and R(̃−, X)Y (p) :=
(p−1R(−, X)Yp)∗(p). In the case that M is a Riemannian manifold, ∇ the Riemannian
operator of covariant derivative and � the associated Laplacian, we have that

H∇
p (�) =

n∑
i=1

E2
i (p) −

n∑
i=1

R˜(−, Ei)Ei(p),

where Ei(p) := Hp(pei) are the standard horizontal fields associated to ∇.

We will show that every 2-connection induces a holonomic connection of order two in the
Ehresmann sense (see [14]). This type of connection is given by a section of pG : J2P/G → M

where J2P/G is the quotient of J2P by the natural action of G in J2P and pG is induced by the
source projection α : J2 → M.

Before proceeding further, we need some concepts and terminology of jet theory (see
[21,22,29,34]). Let π : P → M be a fiber bundle and s, s′ be two local sections. We say that
s and s′ are 2-equivalent at x ∈ M if they satisfy:

• s(x) = s′(x),
• Dis(x) = Dis

′(x) for 1 ≤ i ≤ n,
• Dijs(x) = Dijs

′(x) for 1 ≤ i, j ≤ n.

It follows that we have an equivalence relation on the set of local sections of π : P → M. The
equivalence class of a section s is called the 2-jet of s at x and is denoted by j2

xs. The point x is
called the source of the jet and s(x) ∈ P is called its target.

Let J2Px be the set of the 2-jets at x of local sections ofπ : P → M and set J2P = ⋃x∈M J2Px,
we says that J2P is the set of holonomic 2-jets of P. Note that J2P is a fiber bundle over M by
the source projection α : J2P → M, α(j2

xs) = x and also it is a fiber bundle over P by the target
projection β : J2P → P , β(j2

xs) = s(x).
Let π : P → M be a fiber bundle. We define a mappingΓ of the set of 2-connections to smooth

sections of β : J2P → P as follows. Let H = {Hp : p ∈ M} be a 2-connection. For each p ∈ P ,
there exists a smooth section s : M → P such that s(π(p)) = p and Hp = s∗(π(p)). We set

Γ (H)(p) = j2
π(p)s.

It is clear that Γ (H) is a section of β : J2P → P , moreover an easy computation shows that Γ is
bijective.

Now, we specialize Γ to the case of principal fiber bundles. Let P(M,G) be a principal fiber
bundle and H = {Hp : p ∈ M} a principal 2-connection. For each x ∈ M we take p ∈ P such
that π(p) = x, then there exists a smooth section s : M → P such that s(x) = p andHp = s∗(x).
We define

Γ (H)(x) = j2
xsG,
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where j2
xsG denote the equivalence class for the induced right action of G on J2P . In order to see

that this definition is independent of the representative, take p and q in P such thatπ(p) = π(q) = x

i.e. there exists g ∈ G such that q = pg. Else

Hq = Hpg = Rg∗ (p)Hp = Rg∗ (p)s∗(x) = (Rg ◦ s)∗(x).

We have that s̃ = Rg ◦ s is a smooth section such that s̃(x) = q, Hq = s̃∗(x) and

j2
x(s̃) = j2

x(Rg ◦ s) = (j2
xs)g.

We conclude that the definition is independent of the representative and that Γ (H) is a smooth
section of pG : J2P/G → M.

Proposition 1. Let P(M,G) be a principal fiber bundle. The mapping Γ is bijective between the
set of 2-connections of P(M,G) and the set of smooth sections of pG : J2P/G → M.

Proof. Let Ψ be a smooth section of pG : J2P/G → M and take p ∈ P . We can take a section
s of P(M,G) such that Ψ (π(p)) = j2

π(p)sG and s(π(p)) = p. We write HΨ
p for s∗(π(p)) and will

prove that H� = {HΨ
p : p ∈ P} is a 2-connection for P(M,G). In fact, we have that HΨ

p is a
Schwartz morphism:

π∗ ◦HΨ
p = π∗ ◦ s∗(π(p)) = (π ◦ s)∗(π(p)) = Idτπ(p)M

and

HΨ
pg = (Rg ◦ s)∗(π(pg)) = Rg∗ (p) ◦ s∗(π(p)) = Rg∗ (p) ◦HΨ

p

for all g ∈ G. The smoothness of H� follows immediately from the smoothness of Ψ . Finally,
we observe that Γ (HΨ ) = Ψ . �

Our next goal is to give a characterization of the Stratonovich prolongation, in terms of jet
theory. For the convenience of the reader we present the necessary material of semiholonomic
jets of order two.

Let π : P → M and θ : Q → M be fiber bundles and φ : P → Q a morphism of fiber bundles
(this is θ ◦ φ(p) = π(p) for all p ∈ P). Let j1φ : J1P → J1Q be the unique morphism of fiber
bundles over M such that j1φ(j1s) = j1(φ ◦ s) for all local section s of π : P → M (see for
instance [16,29] or [21]).

The set J2Px of 2-semiholonomic jets of π : P → M at x ∈ M is given by

{j1
xs : s is a local section ofα : J1P → M atx such thats(x) = j1

xβ ◦ s}.
We have thatα : J2P = ⋃x∈M J2P → M is a fiber bundle called the bundle of 2-semiholonomics
jets of P, for the proofs we refer the reader to [29,24].

Let (xλ) and (xλ, yi) be local charts of M and P, respectively. We have the induced local charts
(xλ, yi, yiλ), (xλ, yi, yiλ, y

i
λµ) and (xλ, yi, yiλ, v

i
λµ) for J1P , J2P and J2P , where yiλ, yiλµ and viλµ

are given by

yiλ(j1
xs) = Dλy

i(s(x)), yiλµ(j2
xs) = Dλµy

i(s(x)), viλµ(j1
x s̄) = Dµy

i
λ(s̄(x)),

where s is a local section of π : P → M and s̄ is a local section of α : J1P → M.
The morphism of symmetrization Sym : J2P → J2P is given in the induced local charts for

J2P and J2P , respectively, by

Sym(xλ, yi, yiλ, v
i
λµ) = (xλ, yi, yiλ,

1
2 (viλµ + viµλ)).
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Now, we consider the application ∗ from sections of β : J1P → P to section of β : J2P → P ,
given by

ϕ∗ = Sym ◦ j1ϕ ◦ ϕ,
where ϕ is a section of β : J1P → P .

It is clear that ∗ is a prolongation. In fact, ρ2
1 ◦ ϕ∗ = ϕ, where ρ2

1 : J2P → J1P is defined by
ρ2

1(j2
xs) = j1

xs.
We recall that in the jet approach to connections in fiber bundles (see for instance Kolar et

al. [21]), a connection Λ of the fiber bundle π : P → M is a section of β : J1P → P and that a
section of β : J2P → P is a second order holonomic connection (see Cabras and Kolar [4] and
Ehresmann [14]). In this context ∗ is a prolongation of connections of π : P → M to second order
holonomic connections.

The following result is an intrinsic characterization of the Stratonovich prolongation.

Proposition 2. Let π : P → M be a fiber bundle and H a connection. Then

Γ (HS) = Γ (H)∗

Proof. Let (xλ, yi, yiλ) and (xλ, yi, yiλ, v
i
λµ) be the standard local charts for J1P and J2P , respec-

tively, where (xλ) and (xλ, yi) are local charts for M and P. Let ϕ be a section of β : J1P → P .
In this local charts ϕ is written as

ϕ : (xλ, yi) → (xλ, yi, ϕiλ(xβ, yj))

thus

j1ϕ : (xλ, yi, yiλ) → ((xλ, yi, ϕiλ), yiλ,Dζϕ
i
η + y

j
ζDjϕ

i
η)

and

j1ϕ ◦ ϕ : (xλ, yi) → ((xλ, yi, ϕiλ),Dζϕ
i
η + ϕ

j
ζDjϕ

i
η).

Thus ϕ∗ = Sym ◦ j1ϕ ◦ ϕ is written as

ϕ∗ : (xλ, yi) → (xλ, yi, ϕiλ,
1
2 (Dζϕiη +Dηϕ

i
ζ + ϕ

j
ζDjϕ

i
η + ϕ

j
ηDjϕ

i
ζ)).

Let H = {Hp : p ∈ P} be a connection, (xλ) and (xλ, yi) be local charts for M and P, respectively.
We have that in these local charts Hp(Dλ) = Dλ + aiλDi and

HS
p (Dλ) = Dλ + aiλDi, HS

p (Dλµ) = Dλµ + a
ij
λµDij + aiλµDi + 2aiνλµDiν,

where

a
ij
λµ = 1

2 (aiλa
j
µ + aiµa

j
λ), aiνλµ = 1

2 (aiλδ
ν
µ + aiµδ

ν
λ),

aiλµ = 1
2 (ajλDja

i
µ + a

j
µDja

i
λ +Dλa

i
µ +Dµa

i
λ).

It follows that

Γ (H) : (xλ, yi) → (xλ, yi, aiλ)

and

Γ (HS) : (xλ, yi) → (xλ, yi, aiλ,
1
2 (Dζaiη +Dηa

i
ζ + a

j
ζDja

i
η + a

j
ηDja

i
ζ)).

We conclude that Γ (HS) = Γ (H)∗. �
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We remark that the solutions to the equation of the horizontal lifting, in the sense of Stratonovich
◦dX̃t = HX̃t ◦ dXt , are the same to the solutions of d2X̃t = HS

X̃t
d2Xt .

Next we give a characterization of 2-connections for a fiber bundle π : P → M in terms of
their restriction to the tangent space and a section of Ker(π∗) ⊗⊙2

T ∗M → P .
Let π : P → M be a fiber bundle and H a 2-connection, it follows that H induces a section

C(H) of Ker(π∗) ⊗⊙2
T ∗M → P . Let A,B ∈ Tπ(p)M, we set

C(H)p(A,B) = (Hp − (HR)Sp) ◦Q−1
π(p)(A
 B).

This definition is independent of the representatives. In fact, let G, J ∈ τπ(p)M such that
Qπ(p)(G) = Qπ(p)(J) = A
 B, this implies that G = J + S with S ∈ Tπ(p)M. Since (Hp −
(HR)Sp)/TπpM = 0 it follows that (Hp − (HR)Sp)(G) = (Hp − (HR)Sp)(J). It remains to shows

that C(H)p(A,B) ∈ Ker(π∗(p)), but it is clear since H and HS are 2-connections. We have thus
proved the following characterization of 2-connections.

Proposition 3. Let π : P → M be a fiber bundle. The set of 2-connections are in bijection with
the set of pairs (Γ,Σ) where Γ is a connection and Σ is a section of Ker(π∗) ⊗⊙2

T ∗M → P .

Let P(M,G) be a principal fiber bundle and T a connection in the sense of principal bundles.
We set

C2(T) = {H : is a principal 2-connection and HR = T}.
We will show that C2(T) is an affine space associated with the vector spaceAeh,0(P) of horizontal
equivariant G-valued forms φ : TP 
 TP → G such that

φ ◦ Rg∗ ⊗ Rg∗ = Ad(g−1) ◦ φ, φ/Ker(π∗ ⊗ π∗) = 0.

In fact, we have that the action • of Aeh,0(P) on C2(T) is given by

φ • H ={φ •Hp = γp ◦ φ̃p +Hp : p ∈ P},
where γp(A) = d

dt p exp(tA)t=0 and φ̃p : τπpM → G is the unique morphism such that φ̃p ◦
π∗(p) = φp ◦Qp.

Proposition 4. Let P(M,G) be a principal fiber bundle and T be a connection in the sense of
principal fiber bundles. Then (C2(T), •) is the affine space associated to Aeh,0(P).

Proof. It is clear from the definition of • that (Φ+ Ψ ) • H = Φ • (Ψ • H) and 0 • H = 0.
We only need to show that •H : Aeh,0(P) → C2(T) is a bijection. Let N ∈ C2(S), by the iso-
morphism theorem there exists an unique linear mapping Φp : TpP 
 TpP → G such that
γp ◦Φp ◦Qp = (N −H)p ◦ π∗(p), because Ker(Qp) = TpP ⊂ Ker(γ−1

p ◦ (N −H)p ◦ π∗(p)).
We claim that Φ ∈ Aeh,0(P) and Φ •Hp = Np. In fact, let A ∈ Kerπ∗(p) 
 Kerπ∗(p), we know
that there exists L ∈ τpP such that A = QpL and π∗(p)L ∈ TπpM. Then

Φp(A) = Φp(QpL) = γ−1
p ◦ (N −H)p ◦ π∗(p)(L) = γ−1

p (0) = 0.

Thus Φp/Kerπ∗(p) 
 Kerπ∗(p) = 0. Let A ∈ TpP 
 TpP and g ∈ G, we have that

Φp ◦ (Rg∗ 
 Rg∗)(A) = Φpg ◦Qpg(Rg∗L) = γ−1
pg ◦ (N −H)pg ◦ π∗(pg)(Rg∗L)

= γ−1
pg ◦ (N−H)pg ◦ π∗(p)(L)= γ−1

pg ◦ Rg∗((N −H)p ◦ π∗(p)(L))

= Ad(g−1)(γ−1
p ◦ Rg∗((N −H)p ◦ π∗(p)(L))) = Ad(g−1)Φp(A).

Thus Φ ∈ Aeh,0(P) and it is clear that Φ is the unique element which satisfies Φ • H = N. �
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3. 2-Connections in vector bundles

Throughout this section we let E = E(P,M,G,F, λ) denote a vector bundle associated to the
principal bundle P(M,G) obtained by the representation λ of G on the typical fiber F.

Let H be a principal 2-connection for P(M,G). Naturally, H induces a 2-connection HE =
{HE

e : e ∈ E} for π : E → M. In fact, take e ∈ π−1
E (x), p ∈ π−1

P (x) and ξ ∈ F such that pξ = e,
we define

HE
e = (Fξ)∗(p) ◦Hp,

where Fξ : P → E is given by Fξ(q) = qξ. It follows easily thatHE
e is independent of the choice

of the pair (p, ξ) ∈ P × F such that pξ = e. We call HE the induced 2-connection.
The purpose of this section is to develop the theory of 2-connections induced for vector bundles.

There are many concepts associated to second order connections in vector bundles (see for instance
[4,7,15,23,25,34]), we are particularly interested in one introduced by Liebermann [25].

For k = 1, 2 we have that J2E is a vector bundle over M (see [21,29,34]). Let Jk0Ex be defined
by

Jk0Ex = {jkxs : s is a local section ofE such that s(x) = 0}.
By setting Jk0E = ⋃x∈M Jk0Ex we obtain a vector bundle over M. This vector bundle naturally
embeds in JkE by the inclusion j : Jk0E → JkEwhich is an injective morphism of vector bundles.
It follows that the sequence of vector bundles

0 → Jk0E → JkE → E → 0,

with the morphisms j : Jk0E → JkE and β : JkE → E is exact.

Definition 4. We say that a splitting ϕ : E → JkE of the above exact sequence is an L-connection
of order k.

L-connections of order k are the connections in the sense of Liebermann [25].

Proposition 5. Let H be a principal 2-connection for P(M,G). Then Γ (HE) is an L-connection
of order 2.

Proof. It is enough to show that Γ (HE) : E → J2E is linear. Let p ∈ P , f, g ∈ π−1
E (x = πp)

and a ∈ R. We have that there exists ζ, η ∈ F such that f = pζ and g = pη. Let s be a local
section of P such that Hp = s∗(x). Then

Γ (HE)(f + ag) = j2
x(Fζ+aη ◦ s) = j2

x(Fζ ◦ s) + j2
x(Faη ◦ s)

= Γ (HE)(f ) + aΓ (HE)(g). �

We observe that every L-connection of order 2 induces an L-connection of order 1. In fact, let λ
be an L-connection of order 2, we have that ρ2

1 ◦ λ is an L-connection of order 1. We recall that
ρ2

1 : J2E → J1E is given by ρ2
1(j2s(x)) = j1s(x).

Let E be a vector space and λ be an L-connection of order 1 for E. We set

S2(λ) = {µ ∈ S2(E) : ρ2
1 ◦ µ = λ}.

We claim that S2(λ) have a natural structure of affine space. In order to display its associated vector
space, we recall the so called fundamental sequence which states the sequence of vector bundles

0 → E⊗ (TM 
 TM)∗ → J2E → J1E → 0
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with the morphisms τ : E⊗ (TM 
 TM)∗ → J2E (the fundamental identity) and
ρ2

1 : J2E → J1E is exact (see for instance [22]).

Lemma 3. S2(λ) is an affine space associated to vector space of sections of the vector bundle

Hom((TM 
 TM),Hom(E,E)).

Proof. Take µ and η in S2(λ), since ρ2
1(µ) = ρ2

1(η) we have that µ− η ∈ Ker ρ2
1. By the

fundamental sequence, it follows that there exists an unique γ in E⊗ (TM 
 TM)∗ such that
τ(γ) = µ− η. We can consider µ− η as a section of Hom((TM 
 TM),Hom(E,E)). �

Let E be a vector bundle, we denote by BE the principal fiber bundle of frames of E. The next
theorem shows that every L-connection of order 2 is induced by a unique principal 2-connections
for BE.

Theorem 3. Let E be a vector bundle and ϕ : E → J2E be an L-connection of order 2. Then
there exists an unique 2-connection H for BE such that ϕ = Γ (HE).

Proof. Let p = (e1, . . . , en) ∈ BE, we have that there exist s1, . . . , sn local sections of E such
that ϕ(ei) = j2

π(p)s
i for i = 1, . . . , n. We define

Hp = (s1, . . . , sn)∗(π(p)) : τπ(p)M → τpBE.

It is easy to check that H = {Hp : p ∈ P} is a principal 2-connection for BE. Let p =
(e1, . . . , en) ∈ BE, ξ = (ξ1, . . . , ξn) ∈ F and e = pξ. It follows that

HE
e = (Fξ)∗(p) ◦Hp = (s1ξ1 + · · · + snξn)∗(π(p))

thus

Γ (HE)(e) = j2
π(p)(s

1ξ1 + · · · + snξn) = ϕ(e1)ξ1 + · · · + ϕ(en)ξn = ϕ(e).

It remains to prove the uniqueness of HE. Let S and T be principal 2-connections for BE such
that Γ (SE) = Γ (TE). Since SR = TR, it follows that there exists Ψ such that Ψ • S = T. But
Ψp = 0 for all p ∈ BE since (Fξ)∗(p) ◦ γp ◦ Ψ̃p = 0 for all p ∈ BE and ξ ∈ F . This proves the
theorem. �

Let E be a vector bundle, ϕ be an L-connection of order 2, e ∈ E and X be an M-valued
semimartingale such that X0 = π(e). Let p ∈ BE and ξ ∈ F such that e = pξ. We can define a
parallel transport of e along X with respect to ϕ as

//
ϕ
Xt

(e) = X̃(p)tξ,

where X̃(p) is the SHL of X starting at p with respect to the principal 2-connection H given
by the above theorem. It is clear that //ϕXt (e) is independent of the representatives p ∈ BE and
ξ ∈ F . In fact, let q ∈ BE and ζ ∈ F such that e = qζ. We observe that there exists g ∈ GL(F )
such that q = pg−1 and ζ = gξ, thus X̃(q) = Rg−1X̃(p) is the SHL of X in q. We conclude that
X̃(q)ζ = X̃(p)ξ.

Obviously, //ϕXt (ω) : Ex → EXt (ω) is a linear isomorphism.

Example 2. The correspondence between extensions of ordinary parallel transport on vector
bundles to semimartingales and prolongations of the connections on the base space to the total
space, was discovery by Meyer [27], Arnaudon and Thalmaier [2] extend the work of Meyer and
apply it to different geometric situations. We will show how extensions of the ordinary parallel
transport are in correspondence with L-connections.
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Let M be a manifold equipped with a connection ∇ and let π : E → M be a vector bundle
over M equipped with a covariant derivative operator ∇E, they study some connections ∇′ on
E obtained as prolongations of the pair (∇,∇E) such that π : E → M is affine. Examples of
such prolonged connections are given by the horizontal lift, and by the complete lift in the case
E = TM.

We note that the prolonged connection ∇′ induce naturally an L-connection ϕ∇′
. In fact, the

covariant derivative operator ∇E on E gives a splitting of the tangent bundle TE into the horizontal
bundleHE and the vertical bundle VE. Let he = (π∗(e)|HeE)−1 : Tπ(e) → HeE be the horizontal
lift. From Emery (see [12, Lemma 11, pp. 426]), we have that there exist a unique 2-connection
on E, H′ = {H ′

e : τπ(e)M → τeE : e ∈ E} such that H ′
e|Tπ(e)M = he and He is semi-affine for

e ∈ E. It is easy to check that ϕ∇′
:= Γ (H′) is an L-connection.

Finally, we observe that if X is an M-valued semimartingale and e ∈ EX0 , //∇′
Xt

(e) the parallel

transport of e along X with respect to ϕ∇′
verifies the Itô equation:

d∇′
//∇

′
Xt

(e) = h
//∇′
Xt

(e)(d
∇Xt)

with the initial condition //∇′
Xt

(e) = e.

Example 3. Let E = E(M,ρ, F ) be a vector bundle associated to the principal fiber bundle
P(M,G) with fiber F, H = {Hp : p ∈ P} be a connection for P(M,G) and ∇E the covariant
derivative operator induced by H. Let ∇ be a G-invariant covariant derivative operator of P such
that ∇AB is vertical for any vertical field A. Let X(x) be the solution starting at x ∈ M of the
Stratonovich equation on M:

dXt(x) = A0(Xt(x)) dt +
n∑
i=1

Ai(Xt(x)) ◦ dBit,

whereA0, . . . , An are vector fields on M and (B1
t , . . . , B

n
t ) a Brownian motion onRn. According

to the comments after Lemma 2, we have that there exists a unique principal 2-connection H∇ :=
{H∇

p : p ∈ P} (prolongation of H) satisfying (2). Let Y (p) be the SHL with respect to H∇ of X
starting at p ∈ P (π(p) = x). We know that Y (p) verifies the following Stratonovich equation on
M (see [5] for details):

dYt(p) =
(
HA0 − 1

2

n∑
i=1

ωH(∇HAiHAi)∗
)

(Yt(p)) dt +
n∑
i=1

HAi(Yt(p)) ◦ dBit.

Applying the results of Akiyama (see [1 pp. 86]) to the above formula for the SHL, we obtain an
Itô formula for the parallel transport //∇t (π(p)) = Yt(p) ◦ p−1 : Eπ(p) → EXt (π(p)) induced by
H∇ on E. Let σ be a section of E, we have that

d(//∇t )−1σ(Xt) = (//∇t )−1

(
∇E
A0

+ 1

2

n∑
i=1

(
(∇E
Ai

)2 − 1

2
ωH (∇HAiHAi)

))
σ(Xt) dt

+
n∑
i=1

((//∇t )−1(∇E
Ai

)σ(Xt)) dBit.

Now, we extend the covariant derivative operators to second order.
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Definition 5. Let E be a vector bundle over M. A 2-covariant derivative operator for E (2-CDO
for E) is a mapping ∇ which assigns to each pair of sections L of τM and φ of E a section ∇φ

L of
E, which satisfies the following properties:

(i) ∇L+T φ = ∇Lφ + ∇T φ,
(ii) ∇fLφ = f∇Lφ,

(iii) ∇L(φ + ψ) = ∇Lφ + ∇Lψ and
(iv) ∇Lfφ = L(f )φ + f∇Lφ + 2∇Q(L,f )φ

for any sections L, T of τM, φ,ψ of E and f ∈ C∞(M). We call ∇Lφ the 2-covariant derivative
of φ in the direction of L.

Remark 1. Every 2-covariant derivative operator ∇ induces a covariant derivative operator ∇R

by restriction to sections of TM. We say that ∇R is induced by ∇.

In order to construct 2-CDO, we recall some facts about sections in associated vector bundles
(see [20,21]). Let P(M,G) be a principal fiber bundle andE = E(P,M,G,F, λ) be an associated
vector bundle. We can associate with each section σ of E a function F [σ] : P → F defined by
F [σ](p) = p−1σ(πp) where each p ∈ P is regarded as a linear mapping p : F → Eπp. Notice
that F [σ] satisfies F [σ] ◦ Rg = λg−1 ◦ F [σ] for all g ∈ G. Conversely, if a function f : P → F

satisfies f ◦ Rg = λg−1 ◦ f for all g ∈ G, we have a section of E, S[f ](π(p)) = pf (p) for all
p ∈ P . Obviously, F [S[f ]] = f and S[F [σ]] = σ.

Proposition 6. Let H be a principal 2-connection for P(M,G). Then ∇(H) defined by

∇(H)Lφ(π(p)) = S[(HpL)F [φ]]

is a 2-CDO for E.

Proof. We observe that

Q(HpL, f ◦ π) = HpQ(L, f )

for all sections L of τM and f ∈ C∞(M). In fact, we have that

Q(HpL, f ◦ π) = Q(HpL)(f ◦ π) = (Hp ⊗Hp)(QL)(f ◦ π),

since Hp is a Schwartz morphism. On the other hand, if g ∈ C∞(P)

((Hp⊗Hp)(QL)(f ◦ π))(g) = (Hp ⊗Hp)(QL)(d(f ◦ π), dg) =QL(H∗
pd(f ◦ π), H∗

p dg)

= QL(df ◦ π∗ ◦Hp,H∗
p dg) = QL(df,H∗

p dg)

= HpQ(L, f )(g).

Thus (Hp ⊗Hp)(QL) = HpQ(L, f ), then Q(HpL, f ◦ π) = HpQ(L, f ).
We have that ∇(H) is well defined. In fact

F [∇(H)Lφ] ◦ Rg(p) = F [∇(H)Lφ](pg) = Hpg(L)F [φ] = ((Rg)∗HpL)F [φ]

= HpL(F [φ] ◦ Rg) = HpL(λg−1 ◦ F [φ]) = λg−1 ◦ (HpL)F [φ]

= λg−1 ◦ F [∇(H)Lφ],

which implies that ∇(H)Lφ is a section of E.
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It is easy to check that ∇(H) satisfies the properties defining a 2-CDO. For example, item (iv)
is obtained by

F [∇(H)Lfφ](p) = (HpL)(f ◦ π)F [φ]

= ((HpL)f ◦ π)F [φ] + f ◦ π(HpL)F [φ] + 2Q(HL, f ◦ π)pF [φ]

= (HpL(f ◦ π))F [φ] + f ◦ π(HpL)F [φ] + 2HpQ(L, f )F [φ]

= F [Lfφ + f∇(H)Lφ + 2∇(H)Q(L,f )φ](p). �

It is also possible to construct an analogous to the Stratonovich prolongation for covariant deriva-
tive operators. In fact, given ∇ a CDO for the vector bundle E, it is easy to prove that there exists
∇S the unique 2-CDO for E such that

1. ∇ is induced by ∇S ,
2. ∇S

{X,Y}φ = {∇X,∇Y }φfor any sectionsX, Yof TM andφofE.

We call ∇S the Stratonovich prolongation of ∇.
Let λ be an L-connection of order 1, then λS = Sym ◦ j1λ ◦ λ is an L-connection of order 2,

called the Stratonovich prolongation of λ.
Given a vector bundle E, there is an affine isomorphism between the connections of BE and

covariant derivative operators of E (see for instance [20]). The generalization for 2-CDO is es-
tablished by our next theorem.

Theorem 4. The map ∇ from the set of 2-connections for BE to the set of 2-CDO for E is an
affine isomorphism.

Proof. We see at once that ∇ is an affine morphism. Let Υ be the linear map from Aeh,0(BE) to
sections of Hom(τM,Hom(E,E)) defined by

Υ (φ)(L)(e) = −p(φ̃pL)p−1e,

where e ∈ E, p ∈ BE such that π(p) = e and L is a section of τπpM. We claim that Υ is an
isomorphism. Clearly, Υ is linear and injective. Let a be a section of Hom(τM,Hom(E,E)), we
observe that Υ (φ) = a where φp(Qp(HL)) = −p−1a(L)p for L ∈ τπpM, this shows the claim.
Let H be a 2-connection for BE, we have that

∇(H) = ∇(HS
R) + Υ (H − HS

R),

which proves the theorem. �
Remark 2. Note that 2-covariant derivative operators on vector bundles induce 2-covariant deriva-
tive operators on tensor products and wedge products in a straightforward way and the parallel
transport obtained is the tensor product, respectively, wedge product of the given transports. A
2-covariant derivative operator is also canonically induced on the dual bundles and the associated
parallel transport is the dual of the inverse parallel transport in the vector bundle.

Let E be a vector bundle, ∇ be a 2-CDO for E, e ∈ E and X be an M-valued semimartingale such
that X0 = π(e). Let p ∈ BE and ξ ∈ F such that e = pξ. We can define a parallel transport of e
along X with respect to ∇ by

//∇Xt (e) = X̃(p)tξ
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where X̃(p) is the SHL of X starting at p with respect to the principal 2-connection H given by
the above theorem.

Let L be a section of τM. We recall that a continuous M-valued semimartingale X, is an
L-diffusion if for all f ∈ C∞(M), we have that

f (Xt) − f (X0) −
∫ t

0
Lf (Xs) ds

is a local martingale.

Proposition 7. Let ∇ a 2-CDO for the vector bundle E, L be a section of τM and φ be a section
of E. Then

(//∇Xt )
−1φ ◦Xt = (local martingale)t + φ(x) +

∫ t

0
//−1
Xs

(∇Lφ ◦Xs) ds,

where X is an L-diffusion with X0 = x.

Proof. We have that

(//∇Xt )
−1φ ◦Xt = pX̃−1

t (φ ◦Xt) = pF [φ](X̃t)

= p((local martingale)t + F [φ](p) +
∫ t

0
HL(F [φ])(X̃s) ds)

= p((local martingale)t + F [φ](p) +
∫ t

0
F [∇Lφ](X̃s) ds)

= (local martingale)t + φ(π(p)) + p

(∫ t

0
F [∇Lφ](X̃s) ds

)

= (local martingale)t + φ(π(p)) + p

(∫ t

0
(X̃s)

−1∇Lφ(Xs) ds

)

= (local martingale)t + ϕ(π(p)) +
∫ t

0
//−1
Xs

(∇Lφ ◦Xs) ds. �
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variété différentielle, Séminaire de Probabilités XVI, Lecture Notes in Mathematics 921, Springer, 1982, pp. 1–148.
[33] I. Shigekawa, On stochastic horizontal lifts, Z. Wahrscheinlichkeitsheorie Verw. Geviete 59 (1982) 211–221.
[34] N. Van Que, Du prolongement des espaces fibres et des structures infinitésimales, Ann. Inst. Fourier, Grenoble 17

(1) (1967) 151–223.


	Second order connections and stochastic horizontal lifts*
	Introduction
	Schwartz geometry and 2-connections
	2-Connections in vector bundles
	References


